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Abstract
A ferromagnetic spin glass (FSG) is one of the three isotropic and homogeneous
phases of the long-range partially ordered magnets with spin and atomic
disorder which are selected by symmetry (Andreev 1978 Sov. Phys.—JETP
47 411) (the others are genuine and antiferromagnetic spin glasses). The
linear dynamical response to a magnetic field of two sub-phases of a FSG
with drastically different dynamics, a randomly canted ferromagnet, in which
the component spins create an acute angle with the summary magnetic
moment, and a less-ordered skewed spin glass is analysed in the spin-wave
approximation in the framework of phenomenological theory. The spin-
wave damping coefficients and frequency shifts due to a magnon–magnon
interaction are evaluated as functions of temperature and wavevector as well
as the spectral-weight functions of the linear response to a magnetic field
and the neutron scattering cross section which provides the possibility for
experimental verification of the results. Substantial differences in the spin-
wave characteristics of the FSG compared to those of the Heisenberg spin glass
and the Heisenberg ferromagnet are found to be due to non-linear anisotropy
effects in a FSG.

1. Introduction

Ferromagnetic spin glasses (FSGs) have been extensively studied during the last three decades.
Spontaneously magnetized phases are present in a large number of magnetic materials with
random distribution of magnetic ions. There are metallic (e.g. Ni1−x Mnx) [1], semiconducting
(e.g. (III, Mn)V compounds) [2, 3] and insulating FSGs (e.g. Eux Sr1−x S) [4]. Therefore, the
exchange interactions responsible for the FSG ordering are different (RKKY, superexchange,
etc). We present a general quantum description of the dynamics of a FSG applicable also to
perfectly ordered non-collinear ferromagnets in the framework of the spin-wave approximation,
which is one of the well known problems of the theory of magnetism. Recently the problem
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Figure 1. Schematic temperature–mean exchange energy J (or, equivalently, temperature–
concentration of ferromagnetic ions x) phase diagram of the exchange magnet with competing
ferro- and antiferromagnetic interactions.

became interesting not just from the purely academic point of view since potentially important
new applications of diluted magnets are being considered.

Since microscopic models of disorder are not general, the macroscopic description of
dynamics is especially valid for the disordered magnets. The theory of spin-wave dynamics of
the isotropic homogeneous phases of spin glasses was developed since the pioneering work [5]
by Halperin and Saslow via the work [6] by Andreev who classified the disordered phases
and included non-linearity in the description. According to his group theory analysis, a FSG
is one of the three isotropic disordered phases selected by symmetry (next to a genuine spin
glass (GSG) and an antiferromagnetic spin glass) [6, 7]. Therefore it is a fundamental phase for
theoretical considerations. FSGs can be divided into: randomly canted ferromagnets (RCF),
in which the local spin components create an acute angle with the global magnetic moment,
and skewed spin glasses (SSG), in which the local spin components create any angle withM ,
(the nomenclature was introduced in [8]). We study the dynamics of RCF separately from the
dynamics of SSG because they differ in terms of the number of dynamical degrees of freedom.
According to [7], the description for RCF is also applicable for non-collinear ferromagnets
whereas the description for SSG is applicable for non-collinear ferrimagnets.

More strict characterization of both FSG sub-phases demands the introduction of order
parameters. They are: the magnetization vector M = γ /V 〈∑N

µ=1 sµ〉, where γ denotes
a gyromagnetic ratio and the bracket denotes the thermal average, and the parameters of
Edwards–Anderson type qi = γ 2/V

∑N
µ=1〈si

µ〉2. The equivalency to the diagonal components
of the static equilibrium susceptibility χii is discussed in [9]. With M = Mẑ, RCF is
characterized by χzz = χ‖ �= 0, χxx = χyy = 0 (qz = M2V/N), unlike SSG for which
χxx = χyy = χ⊥ �= 0 (qz �= M2V/N). There is a general scheme of the phase diagram of the
exchange magnets with competing ferromagnetic and antiferromagnetic interactions arising
from different models [10, 11], containing RCF and SSG, as shown in figure 1.

I develop the method proposed in [12] for the description of GSG dynamics, carrying out
the canonical quantization of spin waves and evaluating the linear response to a magnetic field
using the Green function technique. Studying the poles of the elements of the diagonalized
magnetic susceptibility tensor, temperature-dependent non-linear corrections to the spin-wave
frequencies and their coefficients of damping due to the magnon–magnon interaction are
estimated. These considerations lead to the conclusion that differences in the relaxation of
magnons compared to the relaxation in the Heisenberg ferromagnet (see also [13]) result from
the presence of anisotropy in a FSG which is essential for stabilization of the non-collinear
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structure. The special goal of the work is a comparison between the spin-wave relaxation
characteristics (damping coefficients) for RCF and SSG.

This paper is organized as follows. In section 2, we present the Andreev spin-wave
Lagrangian for a FSG, analysing the consequences of its symmetry in detail. In section 3, the
quantum spin-wave theory for RCF is developed and section 4 is devoted to the quantization
of spin waves relevant to SSG. The summary of the results and the outlook for additional
information on the macroscopic description of the dynamics of a FSG is presented in section 5.

2. Spin-wave Lagrangian

The crucial point in writing the macroscopic Lagrangian of spin waves is the determination
of its external and internal symmetry. The external symmetry of the Lagrangian of a FSG is
SO(3)× P , where P denotes the space inversion, whereas the internal symmetry follows from
the symmetry of spin interactions. Following Andreev we assume the presence of isotropic two-
ion exchange interactions and anisotropic one-ion interactions described with the microscopic
Hamiltonian

H = − 1
2

∑
µ,ν

Jµνsµ · sν −
∑

µ

Hµ · sµ, (1)

where the exchange constants Jµν change their sign with the distance between ions and the
effective anisotropy field Hµ acting on the spin of the µth site is randomly distributed. The
possible presence of different magnetic ions in the system can be included via averaging the
gyromagnetic ratio. Some parameters of spin waves (energy gap due to magnon–magnon
interactions) can be identified, however, as so-called exchange-anisotropy parameters, which
is not in contradiction with the model. The origin of this effect in the exchange magnets with
one-ion anisotropy has been clarified in [14]. Its presence may be the result of linearization of
the microscopic spin Hamiltonian since the canonical transformation which eliminates linear
terms from the Hamiltonian modifies the bilinear two-ion interaction term. However, it does
not change the symmetry of the Hamiltonian as a whole. As a consequence, even in the case
of a lack of the spin-wave gap due to the bilinear anisotropy terms of the Hamiltonian, it
may appear due to non-linearity and it may be found from macroscopic considerations if the
corresponding Lagrangian is not Lorentz-invariant.

The spin-wave Lagrangian consists of a kinetic part (depending on time derivatives of the
dynamical parameter), a gradient part (depending on space derivatives) and a non-differential
part. The kinetic part is determined by the densities of the components of the dynamically
induced macroscopic magnetic moment, see below; the gradient part of the Lagrangian
describes two-ion exchange interactions, so it must be invariant under the isotopic space
rotations. The non-differential part describes the one-ion anisotropy and breaks the internal
SO(3) symmetry. It is possible to introduce a gradient part breaking the internal SO(3)

symmetry, as is done in [15], in order to include the two-ion anisotropy effects of the physical
nature. However, we neglect them as weak effects.

The dynamical parameter is the parameter of the spin (isotopic) space rotation. We use
the so-called vector parametrization of the SO(3) group, as was done in [6, 7]. The parameter
ϕ(x, t) = n tan(θ/2) is related to the rotation through the angle θ , (0 < θ < π/2), about the
vector n, (|n| = 1). The transformation-matrix elements are of the form

Oi j (ϕ) = δi j + 2(ϕiϕ j − ϕ2δi j + εik j ϕk)/(1 + ϕ2). (2)

We use the Einstein summation convention.
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The Lagrangian is a combination of invariants of the point symmetry group, built of
vector and tensor quantities. To ensure the internal SO(3) symmetry of the differential part of
the Lagrange function, the differential invariants are built of vectors and tensors under those
transformations: the spontaneous-magnetic-moment densityM(ϕ) = Ô(ϕ)Mo, whereMo is
the equilibrium moment, and right differential forms Ω̇ ≡ δΩ/∂ t , Ω,m ≡ δΩ/∂xm connected
to the right Cartan forms via the relations

Ȯk j (O−1) j i = −2εkli �̇l = −2εkli
ϕ̇l + (ϕ× ϕ̇)l

1 + ϕ2
, (3a)

Okj,m(O−1) j i = −2εkli �l,m = −2εkli
ϕl,m + (ϕ× ϕ,m)l

1 + ϕ2
(3b)

invariant under the right transformations Ô(ϕ) → Ô(ϕ)Ô(ϕ′) (some of the cited authors use
equivalent invariants built of scalar left forms) [15]. The non-differential anisotropy invariants
are built of the vectorM(ϕ) and of the matrix Ô(ϕ), which is a tensor under space rotations
but not under spin rotations.

The transformation of the dynamical parameter connected to the spin-space rotation

ϕ → ϕ′ = (ε + ϕ + ε× ϕ)/(1 − ε · ϕ) (4)

follows from the rotation-group multiplying rule Ô(ϕ′) = Ô(ε)Ô(ϕ). The linear part of
this transformation determines the densities mi = (∂L/∂ϕ̇ j)(∂δϕ j/∂εi ) of the components
of the magnetic moment (see above). They are postulated to be composed of spontaneous,
dynamically induced, and external field parts as

m = M +
2χ⊥
γ

Ω̇ +
2(χ‖ − χ⊥)

γ M2
(M · Ω̇)M + χ̂H. (5)

Here χi j = χ⊥δi j + (χ‖ − χ⊥)Moi Mo j /M2 is the equilibrium static susceptibility and H
denotes the external magnetic field.

The Lagrange function for a FSG is of the form

L = aΩ̇ · Ω̇ + a′(M · Ω̇)2 + a′′M · Ω̇ + b(M · Ω,i )
2 + b′Ω,i · Ω,i

+
2a

a′′H · Ω̇ +M ·H +
2a′

a′′ M ·H(M · Ω̇) − Uan, (6)

where a = 2χ⊥/γ 2; a′ = 2(χ‖ − χ⊥)/γ 2 M2; a′′ = 2/γ ; b = −2(χ‖c2
‖ − a⊥γ M)/γ 2 M2 and

b′ = −2a⊥M/γ [6]. Here the anisotropy energy

Uan = [α1ϕ
2 + α2/M2(Mo × ϕ)2 + α3ϕ

4 + α4/M2ϕ2(Mo × ϕ)2](1 + ϕ2)−2 (7)

is a combination of the non-differential invariants Oii , Oi j O ji , Mi Oi j M j , Mi Oi j O jk Mk ,
Mi Oi j M j Okk .

Let us notice that, since the static part of the thermodynamical potential of a FSG contains
the only bilinear exchange invariant, M · M . The variation of this term is of the form
δ(M · M) = 2M · δM + δM · δM , the exchange part of the spin-wave Lagrangian is
proportional to the invariant M,i · M,i = M2(Ω,i · Ω,i ) − (M · Ω,i )

2, different from the
gradient part of (6) for b′M2 �= −b, [16]. I interpret this fact as the influence of the one-ion
anisotropy as discussed at the beginning of this section. Let us notice also that, according to the
considerations of [16], one cannot apply a similar analysis to the GSG Lagrangian since there
are no multipole moments for GSG (order parameters being linear in spin components) [6].

For RCF χ⊥ = 0, which means that the first term of the Lagrangian vanishes. In this case
two equations of motion are dependent on each other and the number of dynamical degrees of
freedom reduces. The solutions of the linearized equations of motion describe two spin-wave
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modes, one shear ferromagnetic-like mode and one longitudinal mode with related quadratic
and linear dispersions:

ω⊥k = −b′k2 + α + 2M H

�
	 a⊥k2 + γ H +

γ (α1 + α2)

2M
, (8)

ω2
‖k = c2

‖k2 +
α1γ

2

2χ‖
, (9)

where � ≡ 2[M + (χ‖ − χ⊥)H ]/γ , a⊥ denotes a shear-mode parameter of dispersion and c‖
denotes a velocity of the longitudinal spin waves.

For the SSG phase (χ⊥ �= 0), there are three spin-wave modes: two shear ferrimagnetic-
like modes with related dispersions:

ωk± = γ

2

{
±

(
M

χ⊥
− (1 + ξ)H

)
+

[(
M

χ⊥
+ (1 − ξ)H

)2

+ 4ξ H 2 +
4M

γχ⊥
a⊥k2 +

2(α1 + α2)

χ⊥

]1/2}
, (10)

where ξ = 1−χ‖/χ⊥, and one longitudinal mode of the dispersion (9), according to the results
of [8, 17].

Below we will quantize the spin waves of RCF and SSG and analyse their dynamics
separately.

3. Dynamics of randomly canted ferromagnet

3.1. Quantization of Hamiltonian and magnetization

The quantization of elementary excitations of the RCF is a problem in itself, as in the case of the
so-called ‘light-cone quantization formalism’ for elementary particles (see, e.g. [18]), because
of the constrained character of its dynamics. I write the Hamiltonian using the canonical
momenta of the form

πi = ∂L/∂ϕ̇i =
[

2a′M · Ω̇ + a′′ +
2a′M H

a′′

(
1 − 2

ϕ2
x + ϕ2

y

1 + ϕ2

)]
µi , (11)

where µ ≡ Mo+(ϕ×Mo)

1+ϕ2 . It is independent of two of them:

H = 1

4a′

[
πz

µz
− a′′ − 2a′M H

a′′

(
1 − 2

ϕ2
x + ϕ2

y

1 + ϕ2

)]2

− b(M · Ωi)
2 − b′Ωi · Ωi − M H

(
1 − 2

ϕ2
x + ϕ2

y

1 + ϕ2

)
+ Uan. (12)

The form of expression (11) leads to the vector equation

π × µ = 0 (13)

that contains two scalar equations defining two second-kind constraints, [19] (reducing two
variables of the phase space) and one identity. Let us define new variables:

Q1 = ϕz +
ϕxπx

πz
, �1 = πz,

Q2 = 1

21/2�
(πy − ϕxπz), �2 = − �

21/2

(
πx

πz
+ ϕy

)
,

Q3 = πx − ϕyπz ≈ 0, �3 = −1

2

(
πy

πz
+ ϕx

)
≈ 0,

(14)



8566 A Janutka

satisfying canonical Poisson relations, where � = 2M/γ and the standard notation for the
constraint equations is used [19], and write the Hamiltonian in them as

H = 1

4a′M2

[
�1(1 + O) − � +

2a′M2 H

a′′(1 + O)

(
�2 Q2

2

�2
1

+
1

�2
�2

2

)]2

− M2b

(1 + O)2

(
Q1,i − Q2�2,i

�1

)2

− b′

(1 + O)2

[
�2

2

(
Q2,i

�1
− �1,i Q2

�2
1

)2

+
1

2�2
�2

2,i +

(
Q1,i +

1

2

�1,i Q2�2

�2
1

− 1

2

Q2,i �2 + Q2�2,i

�1

)2

+
1

2�2

(
−Q1�2,i + Q1,i�2 − 1

2

Q2,i�
2
2

�1
+

1

2

�1,i Q2�
2
2

�2
1

)2

+
�2

2

(
− Q,i

1 Q2

�1
+

1

2

Q2
2�2,i

�2
1

+
Q1 Q2,i

�1
− Q1�1,i Q2

�2
1

)2

+
1

4

(
Q2,i�2

�1
− �1,i Q2�2

�2
1

− Q2�2,i

�1

)2]

− M H

[
1 −

(
�2 Q2

2

�2
1

+
1

�2
�2

2

)
(1 + O)−1

]

+

[
α1O + α3O2 + α2

(
�2

2

Q2
2

�2
1

+
1

2�2
�2

2

)

+ α4O
(

�2

2

Q2
2

�2
1

+
1

2�2
�2

2

)2]
(1 + O)−2, (15)

O = �2

2

Q2
2

�2
1

+
1

2�2
�2

2 + Q2
1 − Q1 Q2�2

�1
+

1

4

Q2
2�

2
2

�2
1

. (16)

The additional canonical transformation �′
1 = �1 − � eliminates linear terms from the

Hamiltonian.
The canonically quantized boson fields and momenta:

Q1 = h̄1/2

2(V a′M2)1/2

∑
k

ω
−1/2
‖k (bk + b†

−k)e
ik·x ,

�′
1 = i

(h̄a′M2)1/2

V 1/2

∑
k

ω
1/2
‖k (b†

k − b−k)e−ik·x ,

Q2 = h̄1/2

(2V �)1/2

∑
k

(ak + a†
−k)e

ik·x,

�2 = i
(h̄�)1/2

(2V )1/2

∑
k

(a†
k − a−k)e

−ik·x

(17)

(where a(†)

k and b(†)

k denote annihilation (creation) operators for the shear and longitudinal
modes, respectively) diagonalize the bilinear part of the Hamiltonian H2:

H2 = h̄
∑

k

ω‖kb†
kbk + h̄

∑
k

ω⊥ka†
kak. (18)

We consider the quantized Hamiltonian up to the fourth order of expansion in the one-
particle operators:

H 	 H2 + H3 + H4, (19)
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treating the bilinear term as the main term, Ho = H2, and the next two terms as a perturbation
Hint = H3 + H4. Upon quantization, the third-order term is transformed into

H3 = H3A + H3B =
∑
123

[AI(123)(ib†
1a2a3 + h.c.)�(1 − 2 − 3)

+ AII(123)(ib†
1a†

2a3 + h.c.)�(1 + 2 − 3)

+ AIII(123)(ib†
1a†

2a†
3 + h.c.)�(1 + 2 + 3)

+ AIV(123)(ib†
1a2a†

3 + h.c.)�(1 − 2 + 3)]

+
∑
123

[BI(123)(ib†
1b2b3 + h.c.)�(1 − 2 − 3)

− BI(312)(ib†
1b†

2b3 + h.c.)�(1 + 2 − 3)

+ BII(123)(ib†
1b†

2b†
3 + h.c.)�(1 + 2 + 3)

− BI(213)(ib†
1b2b†

3 + h.c.)�(1 − 2 + 3)] (20)

where the scattering amplitudes are of the form

AI(123) = CA(ω
3/2
‖1 − 2ω⊥2ω

1/2
‖1 ),

AII(123) = CA

[(
γ M

χ‖
+ 2γ H

)
ω

1/2
‖1 +

(
−c2

‖ +
γ M

χ‖
a⊥

) |2|2 − |3|2
ω

1/2
‖1

− 2ω⊥2ω
1/2
‖1

]
,

AIII(123) = CA(−ω
3/2
‖1 − 2ω⊥2ω

1/2
‖1 ),

AIV(123) = CA

[(
γ M

χ‖
+ 2γ H

)
ω

1/2
‖1 +

(
−c2

‖ +
γ M

χ‖
a⊥

) |3|2 − |2|2
ω

1/2
‖1

− 2ω⊥2ω
1/2
‖1

]
,

BI(123) = CB
ω‖1 − ω‖2 − ω‖3

(ω‖1ω‖2ω‖3)1/2
, BII(123) = CB

ω‖1 + ω‖2 + ω‖3

(ω‖1ω‖2ω‖3)1/2
,

(21)

with CA = h̄3/2

V 1/2
γ

25/2χ
1/2
‖

χ‖
γ M , CB = h̄3/2

V 1/2
γ

24·21/2χ
1/2
‖

. In order to simplify writing the expressions, we

denote the wavevectors k1, k2, . . . by 1, 2 . . . and we do not use commas between the arguments
of amplitudes. The symbol �(. . .) denotes the Kronecker δ expressing the conservation of
momentum (�(k1 − k2) ≡ δk1,k2 ).

Since the fourth-order term becomes complex, we will take into account only some fourth-
order interaction processes. The amplitudes of these are of the lowest order in T/

h̄γ M
χ‖ when

assuming that the magnons contributing to them have energies of the order of T (valid for
further estimations) and they conserve the number of magnons. We write the corresponding
part of the Hamiltonian H4 as

H4 = H4C + H4D + H4E =
∑
1234

CI(1234)[(a†
1a†

2a3a4 + h.c.)�(1 + 2 − 3 − 4)

+ (a†
1a2a†

3a4 + h.c.)�(1 − 2 + 3 − 4)]

+
∑
1234

CII(1234)(a†
1a2a3a†

4 + h.c.)�(1 − 2 + 3 − 4)

+
∑
1234

DI(1234)[(b†
1b†

2b3b4 + h.c.)�(1 + 2 − 3 − 4)

+ (b†
1b2b†

3b4 + h.c.)�(1 − 2 − 3 + 4)]

+
∑
1234

DII(1234)(b†
1b2b3b†

4 + h.c.)�(1 − 2 + 3 − 4)
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+
∑
1234

E(1234)[(b†
1b2a3a†

4 + h.c.)�(1 − 2 − 3 + 4)

+ (b†
1b2a†

3a4 + h.c.)�(1 − 2 + 3 − 4)], (22)

where the amplitudes are the following:

CI(1234) = h̄2

V

[
γ 2

32χ‖
− γ a⊥

8M
(1 · 4 + 2 · 3) +

χ‖c2
‖

16M2
(1 · 4 + 2 · 3)

]
,

CII(1234) = h̄2

V

χ‖c2
‖

16M2
(1 · 4 + 2 · 3),

DI(1234) = h̄2

V

γ 2

8χ‖(ω‖1ω‖2ω‖3ω‖4)1/2

×
[

M2γ 2

16χ2
‖

+
1

4
(ω‖1ω‖4 − c2

‖1 · 4) +
1

4
(ω‖2ω‖3 − c2

‖2 · 3)

]
,

DII(1234) = h̄2

V

γ 2

8χ‖(ω‖1ω‖2ω‖3ω‖4)1/2

×
[

M2γ 2

16χ2
‖

− 1

4
(ω‖1ω‖4 − c2

‖1 · 4) − 1

4
(ω‖2ω‖3 − c2

‖2 · 3)

]
,

E(1234) = h̄2

V

γ 2

8χ‖(ω‖1ω‖2)1/2

[
γ M

4χ‖
+

χ‖
2γ M

(ω‖1ω‖2 − c2
‖1 · 2) +

a⊥
2

(1 + 4) · (2 + 3)

]
.

(23)

All the elements of the expansion of the Hamiltonian contain products of even numbers of the
a(†)

k operators.
Transforming the density of the magnetic moment (5) into

m = 1

a′′

[
πz(1 + ϕ2)

M
− 2a′M H

a′′

(
1 − 2

ϕ2
x + ϕ2

y

1 + ϕ2

)]
M + χ̂H, (24)

we write its components forH = 0 in the secondary canonical variables as

mx = γ

21/2

(
−�Q1 Q2 +

�

2

Q2�2 Q2

�1
− 1

�
�1�2

)
, (25a)

m y = γ

21/2

[
− 1

�2
(Q1�1 + �1 Q1)�2 +

1

�2
�2 Q2�2 + �Q2

]
, (25b)

mz = γ

2

[
�1 + Q1�1 Q1 − �2

2

Q2
2

�1
− 1

�22
�1�

2
2 − 1

2
Q1(Q2�2 + �2 Q2) +

1

4

Q2�
2
2 Q2

�1

]
.

(25c)

After the quantization, they satisfy the commutation relations generated by the algebra

[mi(x, t), m j (x′, t ′)] = ih̄γ δ(x − x′)δ(t − t ′)εi jkmk(x, t). (26)

In order to estimate small parameters for further calculations, let us evaluate the magnon
contribution to the magnetization as a function of temperature:

〈mz〉o 	 M

[
1 − h̄

V

1

�

∑
q

〈a†
qaq〉 +

h̄

V

1

2a′M2

∑
q

1

ω‖q
〈b†

qbq〉
]

= M[1 − (T/θc)
3/2 + (T/θo)

2]. (27)

Here 〈· · ·〉o denotes an average with the density operator e−Ho/T . There are two characteristic
temperatures in the expression θ

3/2
c 	 h̄1/2 J0⊥a1/2

⊥ / l0, θ2
o 	 h̄c‖ J0‖/ l0, where J0 = J0⊥ + J0‖
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is the energy of the exchange interaction between two spins separated from each other by the
average distance l0. We interpret θc and θo as the maximal shear and longitudinal magnon
energy, which are of the order of the critical temperature.

We assume for the strongly magnetized system in which the magnetization decreases with
temperature that (T/θc)

3/2 > (T/θo)
2. From this inequality one may estimate the relation

between the temperature and the parameter γ M/χ‖. The bilinear part of the fluctuation of the
interaction energy for RCF may be written asϕ,i ρ̂ϕ,i , [5], where ρi j = ρ⊥δi j +(ρ‖−ρ⊥)ni n j is

called the spin stiffness [20]. This leads to θc = (h̄γ /M)1/3ρ⊥, θo = (γ h̄)1/2χ
−1/4
‖ ρ

3/4
‖ . For the

strong-magnetization case, the assumption ρ⊥ � ρ‖ leads to h̄γ M
χ‖ � h̄γ M

χ‖
ρ‖
ρ⊥ = h̄c2

‖/a⊥ > T

via (T/θc)
3/2 > (T/θo)

2. On the basis of these considerations we determine the small
parameters for calculations as T/θc, h̄ω⊥k/θc, h̄ω‖k/θc, T/θo, h̄ω⊥k/θo, h̄ω‖k/θo, T/

h̄γ M
χ‖

,

ω⊥k/
γ M
χ‖ and ω‖k/

γ M
χ‖ .

The linear response functions to an external magnetic field are related to the retarded
Green functions of the components of the magnetic moment density:

χi j(k, ω) = −1

h̄
〈〈mi (k, t), m†

j (k, 0)〉〉(r)
ω . (28)

Here 〈〈A(k, t), B(k, 0)〉〉(r)
ω denotes the Fourier transform of the average −iθ(t)〈[A(k, t),

B(k, 0)]〉. We neglect the index (r) in studying the susceptibility in the vicinity of the spin-
wave resonance. In order to evaluate the linear response functions, we use the perturbation
method [21] outlined in appendix A.

3.2. Linear response functions

Let us study the components of the diagonalized tensor of the dynamical susceptibility χ̂(k, ω),
the poles of which correspond to spin-wave frequencies [22]. In the vicinity of resonance, for
|ω ± ωk⊥| � ωk⊥, |ω ± ωk‖ � ωk‖, they can be divided into a dominant singular part and a
non-singular part. We do not consider multi-magnon bound states, assuming that their energies
are higher than the magnon energies in a wide wavelength region [23]. In calculations we will
expand (25a)–(25c) up to the third order of expansion in fields and momenta.

The linear response of a FSG, for H = 0, is described by the susceptibility tensor. Its
components satisfy χxy(k, ω) = χ∗

yx(k,−ω), which is a consequence of the general symmetry
properties of Green functions for Hermitian operators, and χxz = χyz = χzx = χzy = 0
because all perturbation elements of these components are averages of the products of odd
numbers of a(†)

k operators.
I intend to write the dynamical susceptibility using one-particle functions Gαβ(k, ω) =

〈〈bkα(t), b†
kβ〉〉ω , (bk = (ak, bk, a†

−k, b†
−k)). The structure of Ĝ(k, ω) is determined by the

structure of the mass operator

�̂(k, ω) =



�1 0 �+
3 0

0 �2 0 �+
4

�3 0 �+
1 0

0 �4 0 �+
2


 , (29)

(here �+
i (k, ω) ≡ �∗

i (−k,−ω)), according to the Dyson equation (A.3). The solution of the
Dyson equation for the diagonal unperturbed one-particle functions is the matrix

Ĝ(k, ω) =



G1 0 G3 0
0 G2 0 G4

G+
3 0 G+

1 0
0 G+

4 0 G+
2


 , (30)
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where G+
i (k, ω) ≡ G∗

i (−k,−ω). Assuming a weak interaction between magnons, in the
vicinity of the spin-wave resonance (|ω ± ω⊥k| � ω⊥k, |ω ± ω‖k| � ω‖k) we write the Green
functions up to the first order in �̂(k, ω)/ω as

G1 	 Go1,

G2 	 Go2

G3 	 Go1�
+
3 G+

o1,

G4 	 Go2�
+
4 G+

o2,

(31)

where

Go1 = 1/(ω − ωk⊥ − �1), Go2 = 1/(ω − ωk‖ − �2),

G+
o1 = −1/(ω + ωk⊥ + �+

1 ), G+
o2 = −1/(ω + ωk‖ + �+

2 ).
(32)

The one-particle functions of the type 〈〈bkα(t), A(0)〉〉 in the expansion of the components
of χ̂(k, ω) may be decomposed as a product of the matrix (30) and a four-component
vector ΛA(k, ω), according to (A.7). Here A denotes the element of the expansion of (25a)
and (25c) up to the third order in fields and momenta. The structure of the vectors of the
coefficients of decomposition (A.8) is as follows: six of them, indexed by the corresponding
operators of the expansion of (25a) and (25b), Λ(Q1 Q2)†(k, ω), Λ(�′

1�2)†(k, ω), Λ(Q1�2)†(k, ω),
Λ(Q2�2 Q2)†(k, ω), Λ(�2 Q2�2)†(k, ω), Λ[(Q1�

′
1+�′

1 Q1)�2]†(k, ω), take a similar form with the
second and fourth component equal to zero:

Λ(Q1 Q2)†(k, ω) = (�(Q1 Q2)†, 0,�+
(Q1 Q2)† , 0),

Λ(�′
1�2)

†(k, ω) = (�(�′
1�2)

† , 0,�+
(�′

1�2)† , 0),
(33)

etc, where �+
A(k, ω) ≡ �∗

A(−k,−ω). The other five, corresponding to operators of the
expansion of (25c), Λ(Q2

1)
†(k, ω), Λ(Q2

2+ 1
�2 �2

2)
†(k, ω), Λ(Q1�

′
1 Q1)†(k, ω), Λ[�′

1(Q2
2− 1

�2 �2
2)]

†(k, ω),

Λ[Q1(Q2�2+�2 Q2)]†(k, ω), take the form

Λ(Q2
1)

†(k, ω) = (0,�(Q2
1)

†, 0,�+
(Q2

1)
†), (34)

etc (with the first and third components equal to zero).
The elements of the mass operator have been calculated up to the second order of the

interaction. Relevant terms of the real and imaginary parts of them are presented in appendix B
along with the relevant terms of the functions �

(+)

A (k, ω) calculated up to the first order in the
interaction.

The singular part of χ̂(k, ω) contains all the one-particle functions and elements of
the three-particle functions denoted by Wi j (k, ω). Decomposing the one-particle functions
with (A.7) we find the singular part of the susceptibility in the form

χxx (k, ω) = −γ 2

h̄

{[
− h̄�

4
+ ih̄1/22−1/2�3/2�(Q1 Q2)†(k, ω) + ih̄1/2(2�)−1/2�(�′

1�2)†(k, ω)

− i(h̄�)1/22−3/2�(Q2�2 Q2)
†(k, ω)

]
[−G1(k, ω) + G∗

3(−k,−ω)]

+

[
h̄�

4
+ ih̄1/22−1/2�3/2�∗

(Q1 Q2)
†(−k,−ω) + ih̄1/2(2�)−1/2�∗

(�′
1�2)

†(−k,−ω)

− i(h̄�)1/22−3/2�∗
(Q2�2 Q2)

†(−k,−ω)

]

× [G∗
1(−k,−ω) − G3(k, ω)] + Wxx (k, ω)

}
, (35a)
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χyy(k, ω) = −γ 2

h̄

{[
− h̄�

4
+ h̄1/22−1/2�1/2�(Q1�2)

†(k, ω)

+ h̄1/2�−1/22−3/2�[(Q1�
′
1+�′

1 Q1)�2]†(k, ω)

− h̄1/2�−1/22−3/2�(�2 Q2�2)
†(k, ω)

]
[−G1(k, ω) − G∗

3(−k,−ω)]

+

[
− h̄�

4
+ h̄1/22−1/2�1/2�∗

(Q1�2)
†(−k,−ω)

+ h̄1/2�−1/22−3/2�∗
[(Q1�

′
1+�′

1 Q1)�2]†(−k,−ω)

− h̄1/2�−1/22−3/2�∗
(�2 Q2�2)

†(−k,−ω)

]

× [−G∗
1(−k,−ω) − G3(k, ω)] + Wyy(k, ω)

}
, (35b)

χxy(k, ω) = χ∗
yx(k,−ω) = −γ 2

h̄

{[
− ih̄�

4
+ i(h̄�)1/22−3/2�(Q1�2)†(k, ω)

− ih̄1/22−5/2�−1/2�(�2 Q2�2)
†(k, ω)

]
[−G1(k, ω) + G∗

3(−k,−ω)]

+

[
− ih̄�

4
+ i(h̄�)1/22−3/2�∗

(Q1�2)
†(−k,−ω)

− ih̄1/22−5/2�−1/2�∗
(�2 Q2�2)

†(−k,−ω)

]
[G∗

1(−k,−ω) − G3(k, ω)]

+ [−h̄1/22−3/2�3/2�(Q1 Q2)
†(k, ω) − h̄1/22−3/2�−1/2�(�′

1�2)
†(k, ω)

+ (h̄�)1/22−5/2�(Q2�2 Q2)
†(k, ω)][G1(k, ω) + G∗

3(−k,−ω)]

+ [−h̄1/22−3/2�3/2�∗
(Q1 Q2)†(−k,−ω) − h̄1/22−3/2�−1/2�∗

(�′
1�2)†(−k,−ω)

+ (h̄�)1/22−5/2�∗
(Q2�2 Q2)

†(−k,−ω)][G∗
1(−k,−ω)

+ G3(k, ω)] + Wxy(k, ω)

}
, (35c)

χzz(k, ω) = −γ 2

4h̄
{[−h̄a′M2ω‖k + ih̄1/22�(a′M2ω‖k)

1/2�(Q2
1)

†(k, ω)

+ ih̄1/22(a′M2ω‖k)
1/2�(Q1�

′
1 Q1)

†(k, ω)][−G2(k, ω) + G∗
4(−k,−ω)]

+ [h̄aM2ω‖k + ih̄1/22�(a′M2ω‖k)
1/2�∗

(Q2
1)

†(−k,−ω) + ih̄1/22(a′M2ω‖k)
1/2

× �∗
(Q1�

′
1 Q1)

†(−k,−ω)][G∗
2(−k,−ω) − G4(k, ω)] + Wzz(k, ω)}, (35d)

where the functions Wi j(k, ω) containing singular parts of the many-particle functions are of
higher order in T/θc, h̄ω⊥k/θc, . . ., than the contributions from the one-particle functions.

Let us define �⊥ = ωk⊥|k=0 = γ (α1 + α2)/(2M), �‖ = ωk‖|k=0 = [γ 2α1/(2χ‖)]1/2.
Calculating the functions �A(k, ω) in (35a)–(35d) for h̄γ H, h̄�⊥,‖ � h̄ω⊥,‖k, T one finds

χxx (k, ω) = χyy(k, ω) = −γ M

2
[1 − (T/θc)

3/2][(ω − ω⊥k − δω⊥k + i�⊥k)−1

− (ω + ω⊥k + δω⊥k + i�⊥k)−1], (36a)

χxy(k, ω) = χ∗
yx(k,−ω) = −i

γ M

2
[1 + (T/θc)

3/2][(ω − ω⊥k − δω⊥k + i�⊥k)−1

+ (ω + ω⊥k + δω⊥k + i�⊥k)−1], (36b)



8572 A Janutka

χzz(k, ω) = −χ‖
2

[1 + (T/θo)
2]ω‖k[(ω − ω‖k − δω‖k

+ i�‖k)
−1 − (ω + ω‖k + δω‖k + i�‖k)

−1]. (36c)

Here δω⊥k = Re �1(k, ω⊥k), �⊥k = − Im �1(k, ω⊥k), δω‖k = Re �2(k, ω‖k), �‖k =
− Im �2(k, ω‖k). In the case of a strong external magnetic field h̄γ H � T , the temperature
corrections to χxx , χxy are negligible because they are proportional to e−h̄γ H/T .

The poles of the diagonalized susceptibility tensor components:

χ+
⊥ = χxx + iχxy ,

χ−
⊥ = χxx − iχxy,

χ‖ = χzz

(37)

are determined by the poles of the one-particle functions, so one can find the perturbation
corrections to the spin-wave frequencies and their damping coefficients studying diagonal
elements of the mass operator �1(k, ω) and �2(k, ω). We evaluate contributions to them
coming from the triple-process part of the interaction H3 (denoted δω3

⊥k , δω3
‖k, �3

⊥k, �3
‖k) and

the contributions from the H4 interaction part (denoted δω4
⊥k, δω4

‖k, �4
⊥k, �4

‖k). Additional
indices (1) and (2) at the top of these symbols denote contributions of the first and second order
in the interaction. From (B.1)–(B.4) one finds

δω⊥k = δω
3(2)

⊥k + δω
4(1)

⊥k ≈ 0.5
γ M

χ‖
[(T/θc)

3/2 + (T/θo)
2] (38a)

δω‖k = δω
3(2)

‖k + δω
4(1)

‖k ≈ 0.25
γ M

χ‖

(
γ M

χ‖

/
ω‖k

)
[(T/θc)

3/2 + (T/θo)
2] (38b)

�
3(2)

⊥k ∼ c2
‖

a⊥

(
c2
‖

a⊥

/
γ M

χ‖

)
(h̄a⊥k2/θc)

1/2(T/θc)e
− h̄c2‖

a⊥ /T sinh(2h̄c‖k/T ) (39a)

�
3(2)

‖k ∼ 10−1
c2
‖

a⊥

(
c2
‖

a⊥

/
γ M

χ‖

)(
h̄c2

‖
a⊥

/
θc

)1/2

(T/θc)e
− h̄c2‖

4a⊥ /T sinh(2h̄c‖k/T ) (39b)

for the long-wavelength regime h̄�⊥,‖ � T, h̄ωk⊥,‖ and

�
4(2)

⊥k ∼




10−1 γ M

χ‖

(
h̄γ M

χ‖

/
θc

)
(T/θc)

2 h̄�⊥,‖ � h̄ωk⊥,‖ � T

10−1 γ M

χ‖
(h̄a⊥k2/θc)

1/2

(
h̄γ M

χ‖

/
θc

)
(T/θc)

3/2 h̄�⊥,‖ � T � h̄ωk⊥,‖

10−1 γ M

χ‖
(h̄a⊥k2/θc)

1/2

(
h̄γ M

χ‖

/
θc

)

× (T/θc)
3/2e−h̄�⊥/T T � h̄�⊥,‖ � h̄ωk⊥,‖

(40a)

�
4(2)

‖k ∼




10−1T/h̄(T/h̄ωk‖)
(

γ M

χ‖

/
c2
‖

a⊥

)3(
γ M

χ‖

/
θc

)3

h̄�⊥,‖ � h̄ωk⊥,‖, T

10−1(T/h̄)

(
γ M

χ‖

/
c2
‖

a⊥

)3( h̄γ M

χ‖

/
θc

)3

× (T/h̄ωk‖)(h̄�‖/T )1/2e−h̄�‖/T T � h̄�⊥,‖ � h̄ωk⊥,‖.

(40b)

Note that for �‖ = �⊥ = 0 the frequency corrections δω⊥k, δω‖k are different from zero in
the long-wavelength limit k → 0, which possibility has been predicted in the earlier section.
The main contributions to the damping coefficients come from �

4(2)

⊥k , �
4(2)

‖k since �
3(2)

⊥k , �
3(2)

‖k
are proportional to small exponential factors.
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The method of evaluating the sum (B.4) (the expression for the dominant contribution
to Im �1(k, ω)) was developed in [24, 25] where details of the calculations are available.
It is important to mention, however, that the summary scattering amplitude (B.5) in
Im �

4(2)

1 (k, ω) (B.4) takes the form

M⊥(p, s, k + p − s, k) ∝ γ M

χ‖
− 2a⊥|p + k|2 (41)

on a mass surface defined by the equation ω⊥k + ω⊥p − ω⊥s − ω⊥k+p−s = 0, which leads to
the dominant contribution to the damping coefficient being of the form

�
4(2)

⊥k = γ M

χ‖

(
h̄γ M

χ‖

/
θc

)
(T/θc)

2C + ω⊥k

(
h̄γ M

χ‖

/
θc

)
(T/θc)

2

× [C(1) + C ′
(1) ln(T/h̄a⊥k2) + C ′′

(1) ln2(T/h̄a⊥k2)] + ω⊥k(h̄a⊥k2/θc)(T/θc)
2

× [C(2) + C ′
(2) ln(T/h̄a⊥k2) + C ′′

(2) ln2(T/h̄a⊥k2)], (42)

(C, . . . , C ′′
(2) are constants) for the hydrodynamical regime h̄�⊥ � h̄ω⊥k � T .

This dependence is different from the appropriate dependence for the Heisenberg
ferromagnet [24, 26, 27] and from the result of the macroscopic approach to spin-wave
interactions in ferromagnets [28] for which the expression for �

4(2)
k is similar to (B.4) but

it contains a scattering amplitude which may be written as M⊥(p, s, k + p − s, k) ∝ p · k
on the mass surface. This leads to �

4(2)

k ∝ k4T 2[C + C ′ ln(T/h̄ωk) + C ′′ ln2(T/h̄ωk)]
for the ferromagnet. Our result differs also from the result found in the framework of
microscopic approaches to the diluted Heisenberg ferromagnet (�k ∝ k5, [29, 30]) not
including the presence of magnetic anisotropy and non-collinearity, included in our model.
The general hydrodynamic prediction applicable to perfect and diluted collinear ferromagnets
gives �k ∝ k4, [20].

The wavevector dependence of �⊥k different from the dependence for the Heisenberg
ferromagnet was observed via the neutron scattering from FSGs (Fe1−x Mnx)75P16B6Al3
(x ≈ 0.25) and Fex Cr1−x (x ≈ 0.25) [31, 32]. The possibility of the observation of the
gap in the �⊥k spectrum for k → 0 was suggested from fitting the experimental data of [32].

Note that, tending to the limit ω = 0, k → 0, one finds the magnon contribution to the
static susceptibility:

χ⊥st = M[1 − (T/θc)
3/2]

1

H + (α1 + α2)/(2M)
,

χ‖st = χ‖[1 + (T/θo)
2].

(43)

3.3. Correlation functions of magnetization and neutron scattering cross section

The autocorrelation functions of the density of the magnetic moment components:

Cmi mi (k, ω) = 〈δmi (k, t)δm j (−k, 0)〉−ω (44)

(δm = m − Mo), which are the spectral-weight functions of the linear response, play an
important role in various experimental methods, especially in the commonly used method
of spin-wave analysing the inelastic neutron scattering that enables one to verify our results.
Let us evaluate the correlation functions of the magnetization components as well as the
inelastic neutron scattering cross section depending on them. We calculate them to the
lowest order in T/θc, h̄ωk⊥/θc, . . ., analogously to the earlier considerations for GSG and
for the Heisenberg antiferromagnet [12, 25]. From the fluctuation-dissipation theorem, the
autocorrelation functions are determined by the magnetic susceptibility via

Cmi mi (k, ω) = h̄ Im χii (k, ω) coth(h̄ω/2T ). (45)
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Let us denote �′′
ν (k, ω) ≡ Im �ν(k, ω), �′

A(k, ω) ≡ Re �A(k, ω), �′′
A(k, ω) ≡

Im �A(k, ω), W ′′
i j (k, ω) ≡ Im Wi j (k, ω). Using (31), one obtains for h̄�⊥, h̄�‖ �

h̄ω⊥k, h̄ω‖k � T

Im χxx (k, ω) = Im χyy(k, ω) = γ M

2
(G2

o1(k, ω)�′′
1 (k, ω) − G+2

o1(k, ω)�′′
1 (−k,−ω)

− Go1(k, ω)G+
o1(k, ω){−�′′

3 (k, ω) + �′′
3 (−k,−ω)

+ (ω + ω⊥k)[h̄
−1/2�1/223/2�′

(Q1 Q2)
†(k, ω)

+ h̄−1/2�−3/223/2�′
(�′

1�2)
†(k, ω) − (h̄�)−1/221/2�′

(Q2�2 Q2)
†(k, ω)]

+ (ω − ω⊥k)[h̄−1/223/2�1/2�′
(Q1 Q2)

†(−k,−ω)

+ h̄−1/2�−3/223/2�′
(�′

1�2)
†(−k,−ω)

− (h̄�)−1/221/2�′
(Q2�2 Q2)

†(−k,−ω)]}) − γ 2

h̄
W ′′

xx (k, ω), (46a)

Im χzz(k, ω) = χ

2
ω‖k(G2

o2(k, ω)�′′
2 (k, ω) − G+2

o2(k, ω)�′′
2 (−k,−ω)

− Go2(k, ω)G+
o2(k, ω){−�′′

4 (k, ω) + �′′
4 (−k,−ω)

+ (ω + ω‖k)[h̄−1/22�(a′M2ω‖k)
−1/2�′

(Q2
1)

†(k, ω)

+ h̄−1/22(a′M2ω‖k)
−1/2�′

(Q1�
′
1 Q1)

†(k, ω)]

+ (ω − ω‖k)[h̄
−1/22�(a′M2ω‖k)

−1/2�′
(Q2

1)
†(−k,−ω)

+ h̄−1/22(a′M2ω‖k)
−1/2�′

(Q1�
′
1 Q1)†(−k,−ω)]}) − γ 2

4h̄
W ′′

zz(k, ω). (46b)

We neglect the terms depending on the off-diagonal mass-operator elements �3(k, ω) and
�4(k, ω) as well as the terms depending on the functions �A(k, ω) since they are multiplied
by the factors (ω2 − ω2

⊥k)/ω
2
⊥k or (ω2 − ω2

‖k)/ω
2
‖k, which are small in the vicinity of

resonances. We also neglect the Im �̂3(2)(k, ω) contributions to the mass operator related
to the H3 part of the interaction, because they are proportional to exp(−h̄c2

‖/a⊥T ). For
h̄�⊥, h̄�‖ � h̄ω⊥k, h̄ω‖k � T , near the resonance, we find

�
4(2)′′
1 (k, ω) = −�

4(2)

⊥k ω/ω⊥k,

�
4(2)′′
2 (k, ω) = −�

4(2)

‖k ω/ω‖k.
(47)

According to the method described in [25], a simple form of Im �̂4(2)(k, ω) is caused by the
fact that the main term of the amplitude M⊥(1, 2, 3, k) in the expression in appendix B for
Im �

4(2)

1 (k, ω) (B.4) is constant and the adequate term in the expression for Im �
4(2)

2 (k, ω) is
equal to constant × (ω‖1ω‖2ω‖3ω‖k)

−1/2.
From (45), (46a) and (46b) for the long-wavelength region (h̄ω � T ) one writes

Cmx mx (k, ω) = Cmy my (k, ω)

= 2γ MT
�

4(2)

⊥k ω⊥k[1 + (ω/ω⊥k)
2]

[(ω − ω⊥k − δω⊥k)2 + �2
⊥k][(ω + ω⊥k + δω⊥k)2 + �2

⊥k]
(48a)

Cmz mz (k, ω) = 2χ‖T
�

4(2)

‖k ω2
‖k[1 + (ω/ω‖k)

2]

[(ω − ω‖k − δω‖k)2 + �2
‖k][(ω + ω‖k + δω‖k)2 + �2

‖k]
. (48b)

Let us evaluate the inelastic neutron scattering differential cross section from a FSG starting
from the general expression for magnets [33, 34] which, up to a multiplicative constant, is of
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the form

d2σ

dE p′ d�
∝ p′

p
F2(k)

1

2π h̄

∫ ∞

−∞
dt ei/h̄(E p′−E p)t

∑
µν

eik·(xν−xµ)〈si
µ(0)s j

ν (t)〉(δi j − ki k j/k2). (49)

Here the magnetic form factor F(k) is determined by the atomic structure and k = p − p′,
where p, p′ denote the initial and final momenta of the scattered neutron and sµ denotes the
spin of the ion indicated by µ. The spin vectors can be decomposed as

sµ = szµn + 2−1s−µe−ik0·xµn+ + 2−1s+µeik0·xµn−, (50)

(n = Mo/M = (0, 0, 1), n+ = (1, i, 0), n− = (1,−i, 0), s+ = sx + isy , s− = sx − isy). For
the structure vector k0 → 0, using the identities γ 2/V 2 ∑

µν〈s∓µs±ν(t)〉eik·(xν−xµ) = 〈(mxk ∓
im yk)(mx−k(t) ± im y−k(t))〉 = 〈m∓(k, 0)m±(k, t)〉, γ 2/V 2 ∑

µν〈szµszν(t)〉eik·(xν−xµ) =
〈mzk, mz−k(t)〉, one finds the scattering intensity for the frequency region near the spin-wave
resonance, in which the scattering via spin waves is dominant, in the form

d2σ

d� dEp′
∝ p′

p
F ′2(k){Cmz mz (k, ω)[1 − (nk/k)2] + Cmx mx (k, ω)[1 + (nk/k)2]} (51)

similar to the intensity for GSG in the presence of an external magnetic field [35].

4. Dynamics of a skewed spin glass

4.1. Quantization of Hamiltonian and magnetization

The canonical momenta may be written as the components of the vector

π = 2a
ϕ̇(1 + ϕ2) − ϕ(ϕ · ϕ̇)

(1 + ϕ2)2
+ (2a′M · Ω̇ + a′′ + 2a′M ·H/a′′)µ + 2a/a′′ν, (52)

where µ ≡ Mo+(ϕ×Mo)

1+ϕ2 and ν = H+(H×ϕ)

1+ϕ2 . Via

η = (a′′ + 2a′M ·H/a′′)µ + 2a/a′′ν (53)

the Hamiltonian takes the form

H = 1

4a
({|π − η|2 + [(π − η) · ϕ]2}(1 + ϕ2)

− a′

a + a′M2
{(π − η) · [Mo + ϕ×Mo + (ϕ ·Mo)ϕ]}2)

− b(M · Ω,i)
2 − b′Ω,i · Ω,i −M ·H + Uan. (54)

In order to quantize the Hamiltonian, we use the canonical transformation

π′ = π − a′′Mo − 2(a + a′M2)/a′′H (55)
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which eliminates linear terms of its expansion in the field and momentum components. The
quantized boson fields and momenta:

ϕx = h̄1/2γ

4(V χ⊥)1/2

∑
k

ω
−1/2
⊥k [(ak− + a†

−k−) + (ak+ + b†
−k+)]e

ik·x,

π ′
x = i

(h̄χ⊥)1/2

V 1/2γ

∑
k

ω
1/2
⊥k [(a†

k− − a−k−) + (a†
k+ − a−k+)]e

−ik·x,

ϕy = i
h̄1/2γ

4(V χ⊥)1/2

∑
k

ω
−1/2
⊥k [(a†

−k− − ak−) − (a†
−k+ − ak+)]e

ik·x,

π ′
y = (h̄χ⊥)1/2

V 1/2γ

∑
k

ω
1/2
⊥k [−(a†

k− + a−k−) + (a†
k+ + a−k+)]e−ik·x,

ϕz = h̄1/2γ

2(2V χ‖)1/2

∑
k

ω
−1/2
‖k (bk + b†

−k)e
ik·x,

π ′
z = i

(2h̄χ‖)1/2

V 1/2γ

∑
k

ω
1/2
‖k (b†

k − b−k)e−ik·x,

(56)

satisfy the canonical commutation rules. Here

ω⊥k = γ

2

[(
M

χ⊥
+ (1 − ξ)H

)2

+ 4ξ H 2 +
4M

γχ⊥
a⊥k2 +

2(α1 + α2)

χ⊥

]1/2

, (57)

and a(†)

k±, b(†)

k denote the annihilation (creation) operators for the two shear and one longitudinal
magnon modes.

We consider the quantized Hamiltonian up to the fourth order of expansion in the
annihilation (creation) operators with the diagonal bilinear part

H2 = h̄
∑

k

(ωk−a†
k−ak− + ωk+a†

k+ak+ + ω‖kb†
kbk). (58)

For H = 0, the third-order term takes the form:

H3 =
∑
123

A−+(123)[(ib†
1a2−a3+ + h.c.)�(1 − 2 − 3) + (ib†

1a†
2−a†

3+ + h.c.)�(1 + 2 + 3)]

+
∑
123

A−−(123)[(ib†
1a†

2−a3− + h.c.)�(1 + 2 − 3)

+ (ib†
1a2−a†

3− + h.c.)�(1 − 2 + 3)]

+
∑
123

A++(123)[(ib†
1a†

2+a3+ + h.c.)�(1 + 2 − 3)

+ (ib†
1a2+a†

3+ + h.c.)�(1 − 2 + 3)]

+
∑
123

[BI(123)(ib†
1b2b3 + h.c.)�(1 − 2 − 3)

− BI(312)(ib†
1b†

2b3 + h.c.)�(1 + 2 − 3)

+ BII(123)(ib†
1b†

2b†
3 + h.c.)�(1 + 2 + 3)

− BI(213)(ib†
1b2b†

3 + h.c.)�(1 − 2 + 3)], (59)
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where

A−+(123) = h̄3/2

V 1/2

γ

23/2χ
1/2
‖

ω
1/2
‖1 ,

A−−(123) = h̄3/2

V 1/2

γ

25/2χ
1/2
‖

[
(2 − χ‖/χ⊥)ω

1/2
‖1 +

2χ⊥
χ‖

a⊥|1|2
ω

1/2
‖1

]
,

A++(123) = h̄3/2

V 1/2

γ

25/2χ
1/2
‖

(
χ‖
χ⊥

ω
1/2
‖1 − 2χ⊥

χ‖
a⊥|1|2
ω

1/2
‖1

)
,

(60)

and BI(II)(123) are similar as in (21). The part of H4 important for evaluation of the low-
energy shear-mode damping coefficient (corresponding to processes conserving the number
of magnons) is

H4C =
∑
1234

C(123k)[(a†
1−a2−a3−a†

4− + h.c.)�(1 − 2 − 3 + 4)

+ (a†
1−a2−a†

3−a4− + h.c.)�(1 − 2 + 3 − 4)]. (61)

The amplitude

C(1234) = h̄2

V

χ‖c2
‖

32M2
(1 + 2) · (3 + 4) (62)

is essentially different from the corresponding amplitude for RCF because it is of higher order
in T/

h̄γ M
χ‖ , considering the interaction of thermal magnons (with energies of the order of T ).

Writing the density of the magnetic moment (5) in canonical variables:

m = γ

2
{(π′ − η′) + ϕ× (π′ − η′) + [ϕ · (π′ − η′)]ϕ} +M + χ̂H, (63)

where η′ = (a′′ + 2a′M ·H/a′′)(µ−Mo) + 2a/a′′(ν −H), we perform its quantization.
The regime of parameters important for comparison of the results of calculations with the

results for RCF:

ω⊥k 	 γ M

2χ⊥
� γ

2

[
4M

γχ⊥
a⊥k2 +

2(α1 + α2)

χ⊥

]1/2

(64)

relates to the strongly magnetized system. Performing estimations similar as for RCF one finds
the small parameters for the calculations T/θc, h̄ωk−/θc, h̄ω‖k/θc, T/θo, h̄ωk−/θo, h̄ω‖k/θo,
T/

h̄γ M
χ‖ , ωk−/

γ M
χ‖ and ω‖k/

γ M
χ‖ . In this regime the high energy shear magnons do not thermalize

since h̄ωk+ 	 2h̄ω⊥k 	 h̄γ M/χ⊥ � T . The opposite case M = 0, χ‖ = χ⊥ corresponds to
the GSG phase which has been studied in [12].

4.2. Linear response functions

As done for RCF, we carry out the calculations of the dynamical response Green functions
in the vicinity of the spin-wave resonance expanding the components of the magnetization
operator to the third order in the magnon creation (annihilation) operators. Their singular
parts may be written using the one-particle Green functions Gαβ(k, ω) = 〈〈bkα(t), b†

kβ(0)〉〉ω,

(bk = (ak−, ak+, bk, a†
−k−, a†

−k+, b†
−k)). The relevant diagonal functions:

Gµµ(k, ω) 	 1/[ω − ωkµ − �µ(k, ω)],

Gµ+3,µ+3(k, ω) = G∗
µµ(−k,−ω) 	 −1/[ω + ωkµ + �∗

µµ(−k,−ω)]
(65)

(µ = 1, 2, 3, ωk1 = ωk−, ωk2 = ωk+, ωk3 = ω‖k) are of lower order in �̂(k, ω)/ω (which is
small in the vicinity of the resonance) than irrelevant off-diagonal functions.
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Decomposing all the one-particle function terms by using (A.7), we find the singular part
of the susceptibility:

χxx (k, ω) = −γ 2

4h̄

(
h̄χ⊥

γ 2ω⊥k
{[ω⊥k + (γ M/2χ⊥)]2[G11(k, ω) + G∗

11(−k,−ω)]

+ [ω⊥k − (γ M/2χ⊥)]2[G22(k, ω) + G∗
22(−k,−ω)]}

+ 2i
h̄1/2χ

1/2
⊥

γ 2ω
1/2
⊥k

[�µ

(πzϕy−ϕzπy+4M/γϕz ϕx )
†(k, ω) + �

µ

[(ϕ·π)ϕx ]†(k, ω)]

× {−[ω⊥k + (γ M/2χ⊥)]δ1µG11(k, ω) − [ω⊥k − (γ M/2χ⊥)]δ2µG22(k, ω)}

+ 2i
h̄1/2χ

1/2
⊥

γ 2ω
1/2
⊥k

[�µ∗
(πzϕy−ϕzπy+4M/γϕz ϕx )

†(−k,−ω) + �
µ∗
[(ϕ·π)ϕx ]†(−k,−ω)]

× {[ω⊥k + (γ M/2χ⊥)]δ1µG∗
11(−k,−ω)

+ [ω⊥k − (γ M/2χ⊥)]δ2µG∗
22(−k,−ω)} + Wxx (k, ω)

)
, (66a)

χyy(k, ω) = −γ 2

4h̄

(
h̄χ⊥

γ 2ω⊥k
{[ω⊥k + (γ M/2χ⊥)]2[G11(k, ω) + G∗

11(−k,−ω)]

+ [ω⊥k − (γ M/2χ⊥)]2[G22(k, ω) + G∗
22(−k,−ω)]}

+ 2
h̄1/2χ

1/2
⊥

γ 2ω
1/2
⊥k

[�µ

(−πzϕx +ϕzπx +4M/γϕzϕy)†(k, ω) + �
µ

[(ϕ·π)ϕy]†(k, ω)]

× {−[ω⊥k + (γ M/2χ⊥)]δ1µG11(k, ω) + [ω⊥k − (γ M/2χ⊥)]δ2µG22(k, ω)}

+ 2
h̄1/2χ

1/2
⊥

γ 2ω
1/2
⊥k

[�µ∗
(−πzϕx +ϕzπx +4M/γϕzϕy)

†(−k,−ω) + �
µ∗
[(ϕ·π)ϕy]†(−k,−ω)]

× {−[ω⊥k + (γ M/2χ⊥)]δ1µG∗
11(−k,−ω)

+ [ω⊥k − (γ M/2χ⊥)]δ2µG∗
22(−k,−ω)} + Wyy(k, ω)

)
, (66b)

χxy(k, ω) = χ∗
yx(k,−ω) = −γ 2

4h̄

(
i

h̄χ⊥
γ 2ω⊥k

{[ω⊥k + (γ M/2χ⊥)]2[G11(k, ω) − G∗
11(−k,−ω)]

+ [ω⊥k − (γ M/2χ⊥)]2[−G22(k, ω) + G∗
22(−k,−ω)]}

+
h̄1/2χ

1/2
⊥

γ 2ω
1/2
⊥k

[−i�1
(ϕzπx −πzϕx +4M/γϕzϕy)

†(k, ω) − �1
(−ϕzπy +πzϕy+4M/γϕz ϕx )

†(k, ω)

− i�1
[(ϕ·π)ϕy]†(k, ω) − �1

[(ϕ·π)ϕx ]†(k, ω)][ω⊥k + (γ M/2χ⊥)]G11(k, ω)

+
h̄1/2χ

1/2
⊥

γ 2ω
1/2
⊥k

[i�1∗
(ϕzπx −πzϕx +4M/γϕz ϕy)†(−k,−ω)

− �1∗
(−ϕzπy+πzϕy+4M/γϕzϕx )

†(−k,−ω)

+ i�1∗
[(ϕ·π)ϕy]†(−k,−ω) − �1∗

[(ϕ·π)ϕx ]†(−k,−ω)]

× [ω⊥k + (γ M/2χ⊥)]G∗
11(−k,−ω)

+
h̄1/2χ

1/2
⊥

γ 2ω
1/2
⊥k

[−i�2
(ϕzπx −πzϕx +4M/γϕzϕy)

†(k, ω) + �2
(−ϕzπy+πzϕy +4M/γϕzϕx )

†(k, ω)

− i�2
[(ϕ·π)ϕy]†(k, ω) + �2

[(ϕ·π)ϕx ]†(k, ω)][ω⊥k − (γ M/2χ⊥)]G22(k, ω)
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+
h̄1/2χ

1/2
⊥

γ 2ω
1/2
⊥k

[i�2∗
(ϕzπx −πzϕx +4M/γϕz ϕy)

†(−k,−ω)

+ �2∗
(−ϕzπy+πzϕy+4M/γϕzϕx )

†(−k,−ω) + i�2∗
[(ϕ·π)ϕy]†(−k,−ω)

+ �2∗
[(ϕ·π)ϕx ]†(−k,−ω)][ω⊥k − (γ M/2χ⊥)]G∗

22(−k,−ω) + Wxy(k, ω)

)
,

(66c)

χzz(k, ω) = −γ 2

2h̄

{
h̄χ‖
γ 2

[G33(k, ω) + G∗
33(−k,−ω)]

− i
(2h̄χ‖)1/2

γ
ω

1/2
‖k [�3

(2M/γϕ2
z )†(k, ω) + �3

[πyϕx −ϕyπx −2M/γ (ϕ2
x +ϕ2

y)]†(k, ω)

+ �3
[(ϕ·π)ϕx ]†(k, ω)]G33(k, ω)

+ i
(2h̄χ‖)1/2

γ
ω

1/2
‖k [�3∗

(2M/γϕ2
z )†(−k,−ω) + �3∗

[πyϕx −ϕyπx −2M/γ (ϕ2
x +ϕ2

y )]
†(−k,−ω)

+ �3∗
[(ϕ·π)ϕx ]†(−k,−ω)]G∗

33(−k,−ω) + Wzz(k, ω)

}
, (66d)

χxz = χzx = χyz = χzy = 0. (66e)

The functions Wi j (k, ω) contain singular contributions to many-particle functions which are
of higher order in T/θc, h̄ωk−/θc, . . ., than the contributions from the one-particle functions.
Calculating the functions �α

A(k, ω) of (66a)–(66e), we obtain the susceptibility components:

χxx (k, ω) = χyy(k, ω) = − χ⊥
4ω⊥k

{[ω⊥k + (γ M/2χ⊥)]2[1 + (T/θc)
3/2e−h̄γ M/χ⊥T ]

× [(ω − ωk− + i�k−)−1 − (ω + ωk− + i�k−)−1]

+ [ω⊥k − (γ M/2χ⊥)]2[1 + (T/θc)
3/2]

× [(ω − ωk+ + i�k+)
−1 − (ω + ωk+ + i�k+)

−1]}, (67a)

χxy(k, ω) = χ∗
yx(k,−ω) = − iχ⊥

4ω⊥k
{[ω⊥k + (γ M/2χ⊥)]2[1 − (T/θc)

3/2e−h̄γ M/χ⊥ T ]

× [(ω − ωk− + i�k−)−1 + (ω + ωk− + i�k−)−1]

− [ω⊥k − (γ M/2χ⊥)]2[1 − (T/θc)
3/2]

× [(ω − ωk+ + i�k+)
−1 + (ω + ωk+ + i�k+)

−1]}, (67b)

χzz(k, ω) = −χ‖
2

[1 + (T/θo)
2]2ω‖k[(ω − ω‖k + i�‖k)

−1 − (ω + ω‖k + i�‖k)
−1]. (67c)

Here �k− = − Im �11(k, ωk−), �k+ = − Im �22(k, ωk+) and �‖k = − Im �33(k, ω‖k).
The diagonalized susceptibility is of the form (37) and their poles are the same as the poles

of the one-particle functions. The temperature dependence of χ̂(k, ω) is essentially different
from the corresponding dependence for RCF since the exponential factors e−h̄γ M/χ⊥ T in the
numerators of its shear components are very small.

Let us evaluate the contributions to the spin-wave damping coefficients of the low-
energy shear mode arising from H3 (denoted by �3

k−) and from H4 (denoted by �4
k−) for

α1, . . . , α4 ≈ 0. The additional index (2) at the top of the symbols denotes the contributions
of the second order of the interaction. Evaluating the expressions (C.1) and (C.2) from
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appendix C, [24], we find that �
3(2)

k− ∝ exp(−h̄c2
‖/a⊥T ); this is small (negligible) compared to

�
4(2)
k− ∼




10−1(χ‖/χ⊥)2

(
c2
‖

a⊥

/
γ M

χ⊥

)2

× a⊥k2(h̄a⊥k2/θc)(T/θc)
2 h̄a⊥k2, h̄c‖k � T

10−1(χ‖/χ⊥)2

(
c2
‖

a⊥

/
γ M

χ⊥

)2

× a⊥k2(h̄a⊥k2/θc)
3/2(T/θc)

3/2 T � h̄a⊥k2, h̄c‖k.

(68)

Finding a more accurate form of the damping coefficient for the regime h̄γ (α1 + α2)/(2M) �
h̄ωk− � T :

�
4(2)

k− = ωk−(h̄a⊥k2/θc)(T/θc)
2[C + C ′ ln(T/h̄a⊥k2) + C ′′ ln2(T/h̄a⊥k2)] (69)

(C, C ′, C ′′ are constants), we have used the total scattering amplitude in the expression for
�

4(2)

k− (C.2) written in the form

M−(p, s, k + p − s, k) ∝ |p + k|2 + 4k · p (70)

on the mass surface defined by the equation ωk− + ωp− − ωs− − ω(k+p−s)− = 0.
Accidentally, the wavevector dependence of �

4(2)

k− is similar to that of the Heisenberg
ferromagnet, up to multiplicative constants [20, 24, 26, 27], but it is essentially different from
the suitable one for the shear mode of RCF, being a more similar system to SSG in terms of
the magnetic anisotropy. This is because of the lack of a constant term in (70) that was present
in (41). The dependence �k− ∝ k4 has been observed for disordered Ni1−x Mnx (x ≈ 0.13),
which is a SSG [36]. In this system the alignment of a part of the Mn spins is antiparallel to
the spontaneous moment M , [37]. Unfortunately, there are no available data on spin-wave
damping in semiconducting FSGs to the author’s knowledge, which could be interesting since
ferromagnetic (RCF) as well as ferrimagnetic (SSG) resonances have been observed for thick
(2 µm) films of Ga1−x MnxAs, dependent on the magnetic ion concentration x [38], not for the
bulk material, however, for technological reasons [39]. Recent calculations for this compound
suggest the existence of both types of FSG ordering [40].

5. Summary and outlook

We have constructed the quantum description of the spin-wave excitations in RCF and SSG in
the framework of a phenomenological approach which is general and applicable to a wide class
of materials since it is independent of the mechanism of spin interaction (based only on their
symmetry). It should be mentioned, however, that the macroscopic description is restricted to
systems of large magnetic moments since it treats spin as a vector, which makes it inapplicable
to itinerant FSGs where a part of the spins is very small [41], resulting in the experimentally
observed low-temperature disappearance of spin waves [42]. The problem of quantization of
the macroscopic excitations has been solved for the RCF model, which is non-trivial due to its
constrained dynamics.

We have found differences in the dynamical susceptibility of RCF compared to that of the
Heisenberg ferromagnet. Especially important differences in the shear spin-wave coefficients
of damping due to the magnon–magnon interaction (the appearance of the dispersion gap
in the long-wavelength limit) have been interpreted as a consequence of the presence of the
anisotropy in the FSG’s Hamiltonian which is an essential topic in the description of the
dynamics of partially ordered or non-collinear structures [14]. The differences found in the
dynamical susceptibility of RCF compared to SSG enable one to distinguish both phases
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Figure 2. Dispersion of damping coefficients of the long-wavelength shear spin waves for RCF,
SSG and ferromagnet, next to the temperature dependence of the magnon contribution to the shear
static susceptibility of these systems, (χ⊥(T ) for the ferromagnet from [27]).

experimentally. There are different dispersions of the damping coefficients of spin waves of
both phases (figure 2), but also temperature dependences of the contributions to the dynamical
and to the easily measurable static susceptibility are different (the static one may be found from
the dynamical one in the limit ω = 0, k → 0). The cross section for the neutron scattering from
RCF via spin waves has been evaluated in order to make possible the precise interpretation of
the spectroscopy observations.

Let us notice, however, that the magnon–magnon channel of spin-wave relaxation, which
is a non-dissipative channel, is expected to be the most important for the stiff shear modes
of FSG excitations while the longitudinal mode is usually soft in real magnets due to the
presence of inhomogeneity (a mictomagnetism) [43]. The inclusion of inhomogeneity may
be easily carried out via treating the vector forms a = Ω̇(ϕ), bi = Ω,i (ψ) as components of
a Yang–Mills field for the transformation SO(3) of the spin vector, as was proposed for the
GSG by Dzyaloshinskii and Volovik for a different problem (the so-called ‘frustration’) [44].
Here ϕ andψ denote the parameters of rotation of the spin (isotopic) space from the temporal
equilibrium state and from the initial state, respectively. The general method of construction
of the relaxation function developed in application to homogeneous disordered magnets
in [45] may be used to this case, leading to the appearance of two longitudinal over-damped
modes instead of one propagative longitudinal mode, according to the assumption of [46] and
according to numerous experimental observations of an additional magnetic central peak in
neutron scattering intensity.

The channel of magnon relaxation via elastic scattering from acoustical phonons is
generally important due to the comparable energies of magnons and phonons. We have
studied this in the framework of a macroscopic theory using the method of [22, 47]. The
application of this method to the spin glass was presented in detail in [48]. Expanding
the Hamiltonian in the small deformational parameters û, Ω,i · u, j , M · u,i , v̂ (vi j =
1/2(ui,k Okj + Oikuk, j + ui,k Okl ul, j )), where u denotes the deformation field and û the
deformation tensor, one may find via the canonical quantization the shear magnon–phonon
interaction Hamiltonian for RCF being of the form

Hs-ph =
∑
123ν

As-ph(123ν)[(ic†
1ν

a†
2a3 + h.c.)�(1 + 2 − 3)

+ (ic†
1νa2a†

3 + h.c.)�(1 − 2 + 3)] (71)

with

As-ph(123ν) = h̄3/2

V 1/2

1

2(2ρ)1/2�
(ω

ph
1ν)

−1/2{−2λ2(2 · 3)(1 · e1ν)

− λ1[(1 · 2)(3 · e1ν) + (1 · 3)(2 · e1ν)] + (β1 + β2)(1 · e1ν)}. (72)
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Here c(†)

kν denotes the annihilation (creation) operator for the acoustical phonon of the mode
numbered by ν (ν = 1, 2, 3) and ekν denotes the corresponding phonon polarization vector,
where ρ is the density of mass. In the expression, the terms depending on the constants λ1(2) are
of exchange origin while those depending on β1(2) are of one-ion anisotropy origin. Such a form
of the magnon–phonon interaction is identical to that predicted for the Heisenberg ferromagnet,
which enables us to exclude qualitative differences in magnon–phonon corrections to the
magnon damping coefficient of RCF and ferromagnet [26].

The studies on the magneto-elastic waves which have been carried out for a FSG in [13]
give additional information on the long-wavelength spin-wave relaxation in the vicinity of
homogeneous resonance (using ultrasound methods).
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Appendix A. Perturbation method for one-particle functions

The most important terms in the linear-response functions are one-particle functions of the form
〈〈bkα(t), A(0)〉〉, where bkα are the elements of the four-component vector of the creation and
annihilation operators in the Heisenberg picture for RCF:

bk(t) = (ak(t), bk(t), a†
−k(t), b†

−k(t)), (A.1)

or of the six-component vector for SSG, respectively. Let us define the projection operator
P A = i〈〈A, b†

kα〉〉R−1
αβ bkβ , (Rαβ = 〈[bkαb†

kβ]〉). The solutions of the Liouville equation for
the one-particle operators separate into a linear part and a non-linear perturbation correction:

bk(t) = Pbk(t) + (1 − P)bk(t) = iĜ(k, t)R̂−1bk + i
∫ t

0
Ĝ(k, s)R̂−1fk(t − s) ds, (A.2)

where fk(t) = i/h̄e(i/h̄(1−P)Lt)(1 − P)Lbk and L denotes the Liouville operator L A =
[Ho + Hint, A] (L = Lo + L int). Using (A.2), one solves the equations of motion for the
one-particle functions and finds

Ĝ(k, ω) = [(ω − ω̂k)R̂−1 − �̂(k, ω)]−1, (A.3)

where

ωkαβ = −i/h̄〈〈Lobkα, b†
kγ 〉〉R−1

γβ , (A.4)

�αβ(k, ω) = −i/h̄〈〈L intbkα, b†
kγ 〉〉R−1

γβ + 〈〈 fkα(t), f †
kγ 〉〉ω R−1

γβ . (A.5)

In order to evaluate the real and imaginary parts of the mass operator, we take into account the
second interaction approximation for the expression (A.5):

�αβ(k, ω) = −1/h̄〈[L intbkα, b†
kγ ]〉o R−1

γβ − i/h̄2
∫ ∞

−∞
dt θ(t)eiωt

× 〈[ei/h̄ Lot (1 − P)L intbkα, (1 − P)L intb
†
kγ ]〉o R−1

γβ . (A.6)

From the decomposition (A.2) the Fourier transform of any one-particle function
〈〈bkα(t), A(0)〉〉 can be written as a component of the vector

〈〈bk(t), A(0)〉〉ω = Ĝ(k, ω)ΛA(k, ω), (A.7)
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where

ΛA(k, ω) = iR̂−1〈〈bk, A(0)〉〉 + iR̂−1〈〈fk(t), A(0)〉〉ω. (A.8)

The components of (A.8) are calculated up to the first order in interaction:

�α
A(k, ω) = R−1

αβ 〈[bkβ, A(0)]〉o + i/h̄ R−1
αβ

∫ ∞

−∞
dt θ(t)eiωt 〈[ei/h̄ Lot(1 − P)L intbkβ, A(0)]〉o,

(A.9)

in order to take into account the real and imaginary parts.

Appendix B. Magnon mass operator for RCF

Using the Wick theorem to (A.6), one finds the contributions of first order in the H4 interaction
part and of second order in the H3 and H4 interaction parts to the diagonal components of the
mass operator:

�
4(1)

1 (k, ω) = 2

h̄

∑
q

[CI(qkqk) + CI(kqkq) + CI(qqkk) + CI(kkqq) + 2CI(kqqk)

+ 2CI(qkkq) + CII(qkqk) + CII(kqkq) + CII(qqkk) + CII(kkqq)]n⊥q

+
4

h̄

∑
q

E(qqkk)n‖q, (B.1)

�
3(2)

1 (k, ω) = 1

h̄

∑
12

{[−(ω + ω‖1 + ω⊥2)
−1 + iπδ(ω + ω‖1 + ω⊥2)]�(1 + 2 + k)

× [AIII(12k) + AIII(1k2)]2 + [(ω − ω‖1 − ω⊥2)
−1 − iπδ(ω − ω‖1 − ω⊥2)]

× �(1 + 2 − k)[AII(12k) + AIV(1k2)]2}(n‖1 + n⊥2 + 1)

+
1

h̄

∑
12

{[−(ω − ω‖1 + ω⊥2)
−1 + iπδ(ω − ω‖1 + ω⊥2)]�(1 − 2 − k)

× [AI(12k) + AI(1k2)]2 + [(ω + ω‖1 − ω⊥2)
−1 − iπδ(ω⊥k + ω‖1 − ω⊥2)]

× �(1 − 2 + k)[AII(1k2) + AIV(12k)]2}(−n⊥2 + n‖1), (B.2)

�
3(2)

2 (k, ω) = 1

h̄

∑
12

{[−(ω + ω⊥1 + ω⊥2)
−1 + iπδ(ω + ω⊥1 + ω⊥2)]�(1 + 2 + k)

× AIII(k12)[AIII(k12) + AIII(k21)] + [(ω − ω⊥1 − ω⊥2)
−1

− iπδ(ω − ω⊥1 − ω⊥2)]

× �(1 + 2 − k)AI(k12)[AI(k12) + AI(k21)]}(n⊥1 + n⊥2 + 1)

+
1

h̄

∑
12

{[−(ω − ω⊥1 + ω⊥2)
−1 + iπδ(ω − ω⊥1 + ω⊥2)]

× �(1 − 2 − k)AIV(k12)

× [AII(k21) + AIV(k12)] + [(ω + ω⊥1 − ω⊥2)
−1 − iπδ(ω + ω⊥1 − ω⊥2)]

× �(1 − 2 + k)AII(k12)[AII(k12) + AIV(k21)]}(−n⊥2 + n⊥1)

+
1

h̄

∑
12

{[−(ω + ω‖1 + ω‖2)
−1 + iπδ(ω + ω‖1 + ω‖2)]

× [BII(12k)]218�(1 + 2 + k)

+ [(ω − ω‖1 − ω‖2)
−1 − iπδ(ω − ω‖1 − ω‖2)]�(1 + 2 − k)[BI(k12)]218}
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× (n‖1 + n‖2 + 1) +
1

h̄

∑
12

[(ω − ω‖1 + ω‖2)
−1 − iπδ(ω − ω‖1 + ω‖2)]

× �(1 − 2 − k)[BI(12k)]236(n‖2 − n‖1), (B.3)

Im �
4(2)

1 (k, ω) = π

2h̄2

∑
123

[M⊥(1, 2, 3, k)]2[−n⊥1(n⊥2 + 1)(n⊥3 + 1)

+ (n⊥1 + 1)n⊥2n⊥3]δ(ω + ω⊥1 − ω⊥2 − ω⊥3)�(1 − 2 − 3 + k). (B.4)

Here

M⊥(1, 2, 3, k) = CI(1k23) + CI(1k32) + CI(k123) + CI(k132) + CI(23k1)

+ CI(32k1) + CI(231k) + CI(321k) + CI(213k) + CI(312k) + CI(2k31)

+ CI(3k21) + CI(12k3) + CI(13k2) + CI(k213) + CI(k312) + CII(31k2)

+ CII(21k3) + CII(3k12) + CII(2k13) + CII(k231) + CII(k321)

+ CII(123k) + CII(132k). (B.5)

The change of Cµ(1234) into Dµ(1234) in (B.5) and in (B.1) together with the changes
n⊥q → n‖q and ω⊥k → ω‖k in (B.1) and (B.4) lead to the expressions for �

4(1)
2 (k, ω) and

Im �
4(2)

2 (k, ω), respectively. We do not include contributions from the part of H4 containing
products of the different mode creation (annihilation) operators a(†)

k and b(†)

k since they are
negligible on the mass surfaces defined by the equations

ω⊥k + ω‖1 − ω⊥2 − ω‖3 = 0,

ω‖k + ω⊥1 − ω‖2 − ω⊥3 = 0.
(B.6)

We omit a presentation of the detailed form of the coefficients of decomposition (A.7) of the
one-particle Green functions ΛA(k, ω) useful for calculations of the dynamical susceptibility.

Appendix C. Magnon mass operator for SSG

From (A.6), the contributions of the second order in the H3 and H4 interaction parts to the
spin-wave damping coefficients of the low-energy shear mode take the form

�
3(2)
k− = π

h̄2

∑
12

[A−−(12k) + A−−(1k2)]2�(1 + 2 − k)δ(ωk− − ω‖1 − ω2−)

× (n‖1 + n2− + 1) +
π

h̄2

∑
12

[A−−(1k2) + A−−(12k)]2

× �(1 − 2 + k)δ(ωk− + ω‖1 − ω2−)(−n2− + n‖1), (C.1)

�
4(2)

k− = π

2h̄2

∑
123

[M−(123k)]2[n1−(n2− + 1)(n3− + 1) − (n1− + 1)n2−n3−]

× �(1 − 2 − 3 + k)δ(ωk− + ω1− − ω2− − ω3−), (C.2)

where

M−(1, 2, 3, k) = C(213k) + C(312k) + C(2k31) + C(3k21) + C(12k3) + C(13k2)

+ C(k213) + C(k312) + C(31k2) + C(21k3) + C(3k12)

+ C(2k13) + C(k231) + C(k321) + C(123k) + C(132k). (C.3)

We do not include contributions from the part of H4 containing products of the different mode
creation (annihilation) operators a(†)

k− and b(†)

k , since they are negligible on the relevant mass
surfaces defined by equations (B.6) with the change ω⊥k → ωk−.
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